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Abstract 

Natural language processing techniques are having an increasing impact on clinical care from patient, clinician, administrator, and research perspec-
tive. Among others are automated generation of clinical notes and discharge letters, medical term coding for billing, medical chatbots both for pa-
tients and clinicians, data enrichment in the identification of disease symptoms or diagnosis, cohort selection for clinical trial, and auditing purposes. In 
the review, an overview of the history in natural language processing techniques developed with brief technical background is presented. 
Subsequently, the review will discuss implementation strategies of natural language processing tools, thereby specifically focusing on large language 
models, and conclude with future opportunities in the application of such techniques in the field of cardiology.  

Keywords Large language models • Natural language processing • Cardiology • Clinical applications  

Introduction 
Natural language processing (NLP) techniques aim to provide the com-
puter with an understanding of the human language, either in spoken or 
in written format. State-of-the-art NLP methods are based on large lan-
guage models (LLMs), which, even though they are mainly designed for 
text generation tasks, e.g. to provide the most probable sequence of 
words learned from very large collections of sample text based on 
the prompt provided by the user, can also be used for information ex-
traction and prediction tasks.1,2 Applications built on LLMs allow the 
computer to derive meaning, understand, and analyse free text by rec-
ognizing mentions of specific concepts (entity recognition) and their re-
lations to generate coherent text for summarizing, translating, 
answering questions, and providing guidance, among many other appli-
cations.3,4 Furthermore, when trained with reinforcement learning, the 
model lets users immediately prompt modifications to the output 
through subsequent interactions, improving its answers to better fit 
the needs of the users. The latest advance in language generation inter-
faces took the world by storm in just a few weeks, creating full-length 
documents, poems, and code almost indistinguishable from human- 
generated content generated from short prompts and questions. 
These interfaces, such as OpenAI’s ChatGPT,5,6 based on the GPT fam-
ily of language models (LMs), and Google’s Bard,7–9 based on the PaLM2 
model, have led to mistaken claims10–12 that ChatGPT has passed what 
in 1950 was defined as the ultimate test of artificial intelligence (AI)— 
the Turing test13—whereby a computer programme could fool a 
human into thinking that a dialogue interaction with it was actually 
with another human. Despite these claims, even though ChatGPT 
can imitate interaction that is almost indistinguishable from interaction 
with a human, true dialogue interaction has not yet been achieved as 
that would require understanding of physical and psychological laws, 
thought processes and connections of ideas, logics, beliefs, and values 
that are beyond what ChatGPT is currently able to achieve (Figure 1A). 

For patient diagnosis and care, however, dialogue is not the concern. In 
medicine and, specifically, clinical research, NLP techniques are increas-
ingly being used to improve the use of unstructured data in electronic 
health records (EHR). Artificial intelligence–based NLP techniques allow 
for fast and automated processing of knowledge embedded in the un-
structured portions of the EHR (e.g. clinician notes, lab, or imaging re-
ports), in conjunction with structured content. Without NLP methods, 
such information is only accessible through manual, labour-intensive 
chart review. Other areas of application for NLP techniques that have 
been explored include chart summarization and patient communica-
tion.14–16 Specifically in cardiology, NLP has been proposed and tested 
for the identification and characterization of cardiovascular disease co-
horts, recognition of signs, symptoms, risk factors, comorbidities, and 

medical reasoning.5,17–23 Additionally, from free text reports, measure-
ments not recorded in a structured manner can be obtained. 

The application of NLP techniques in both clinical and research areas 
provides lots of potential, as they can alleviate administrative clinical 
burden, improve patient communication, and improve data extraction 
methods. The application of LLMs in cardiology is believed to provide 
novel strategies to inform patients, support cardiologists, improve 
clinical administrative processes, and improve data collection for 
cardiology-focused clinical research. In the current review, we describe 
the important role that NLP techniques could have in patient care, 
thereby focusing on LLMs. We will first provide insight into the evolu-
tion of NLP techniques over time, introduce the technical aspects 
underpinning LLMs (see Supplementary data online, Glossary), and pre-
sent a framework to develop LLMs for different clinical purposes. 
Challenges and opportunities in the application of LLMs in the field of 
cardiology will be described. 

Natural language processing over 
time 
Natural language processing aims to compute a logical representation of 
the information contained in a document. This representation should ex-
press in an unambiguous way the relations between the main actors of 
the discourse and their intentions over time.24,25 Once computed, the 
logical representation can later be used to perform various activities of 
interest automatically like question answering, summarizing, translating, 
or other tasks that assume understanding of human language. The earliest 
NLP programme that successfully computed such a representation26 was 
the SHRDLU system: a dialogue system made to interpret instructions 
given by a user to control a robotic manipulator in a virtual world com-
posed of basic objects such as blocks, cones, and balls. For this pro-
gramme to understand the instructions, it was necessary to restrict 
the world to a closed world, where it is assumed that everything that is 
known is encoded. Building the logical representation of more general 
events happening in the real world, where not everything is known, is 
a prerequisite to any automatic understanding of the documents report-
ing these events but is still a research problem for the NLP community.27 

In some applications (UCHealth’s LIVI, Infermedica’s Symptomate) devel-
oped nowadays, this closed-world assumption is met (Figure 2), but desired 
applications in clinical care would require interactions and understanding 
of the real world. With the introduction of LLMs, the shift from the closed 
world to the real world can be accomplished. Large language models pro-
vide this large potential, as LLMs trained for a specific task may also gen-
erate reasonable answers when performing tasks just outside but related 
to the task it was trained for.  
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The automated interpretation of natural language was first men-
tioned as one of the Turing tasks in the 1950s (Figure 3) and was quickly 
followed by the first attempts with an intuitive approach, which was 

dominant from 1950 to 1990. In this approach, the logical representa-
tion is hard hand coded with rules defined to perform a preselected 
task on a chosen set of documents. The series of Message 

Human: What gender will the first female 
doctor in cardiology be? 

ChatGPT: It is not possible for me to 
predict the specific gender of the first female 
doctor in cardiology. The gender of doctors in 
a specific specialty is determined by various 
factors such as individual career choices, 
interests, and opportunities. The field of 
medicine encourages and welcomes 
individuals of all genders to pursue careers in 
various specialties, including cardiology. It is 
important to support and promote gender 
diversity in the medical profession.

Human: What is the first symptom of a 
patient complaining of chest pain starting with 
pain radiating to its left arm? 

ChatGPT: The first symptom of a patient 
complaining of chest pain that radiates to the 
left arm is typically described as the chest 
pain itself. This type of pain can be indicative 
of a potential cardiac issue, such as angina or 
a heart attack. However, it's important to 
note that chest pain and its associated 
symptoms can vary among individuals, and 
not everyone may experience the same 
sensations or radiating pain. If someone is 
experiencing chest pain that radiates to the 
left arm or any other concerning symptoms, it 
is crucial to seek immediate medical attention 
for a proper evaluation and diagnosis.

Human (clinician): I already know when the 
pain started and that it started suddenly, why 
is it so important to ask again?

ChatGPT: Apologies for the confusion. If you 
already have the information about the time of 
onset and the sudden nature of the pain, you 
can skip that question during the anamnesis. It 
is essential to prioritize the remaining 
questions to gather more specific information 
about the pain and associated symptoms.

Here's a revised list of the most important 
questions to ask in your case:
1. Character of pain: How would you 

describe the pain? Is it sharp, stabbing, or a 
dull ache? Does it radiate to any other 
areas?

2. Severity of pain: On a scale of 0 to 10, with 
0 being no pain and 10 being the worst 
pain imaginable, how would you rate the 
severity of your pain? 

3. Aggravating or relieving factors: Does 
anything make the pain worse or better? 
Are there specific activities or positions 
that worsen the pain? 

4. Associated symptoms: Are you 
experiencing any additional symptoms 
along with the chest pain? These can 
include shortness of breath, sweating, 
nausea, vomiting, lightheadedness, or 
palpitations. 

5. Medical history: Do you have any known 
cardiac conditions or other relevant 
medical conditions?

By focusing on these questions, you can gather 
important information related to the nature, 
severity, and associated symptoms of the chest 
pain. This will help in your assessment and 
decision-making process while considering 
potential causes and determining the 
appropriate course of action.

Human (clinician): Patient (56 yo) 
presenting with chest pain at the ED. Temp 
37.6 BP 129/68, HR 100, RR 20. Dull pain at 
the left side of the chest, started suddenly 2 
hours ago when hurrying to the next meeting 
at work. Stopped 2 years ago with smoking. 
What is the most important follow-up test?

ChatGPT: Based on the patient's 
presentation with chest pain, there are several 
possible causes to consider, including cardiac 
issues. Given the sudden onset of pain and the 
patient's risk factors (age, history of smoking), 
the most important follow-up test would be 
an electrocardiogram (ECG).
An ECG measures the electrical activity of the 
heart and can help identify certain cardiac 
abnormalities, such as ischemia (reduced 
blood flow to the heart), myocardial infarction 
(heart attack), or arrhythmias. It is a non-
invasive and commonly used diagnostic tool in 
the evaluation of chest pain.
An ECG can provide important information 
about the heart's rhythm, any signs of acute or 
previous heart damage, and other indicators 
of cardiac conditions. The results of the ECG 
can help guide further management, such as 
determining the need for immediate 
intervention or additional diagnostic tests.
It's important to note that this response is 
based on the information provided and is not 
a substitute for professional medical advice. A 
healthcare professional should evaluate the 
patient and make appropriate decisions 
regarding diagnostic tests and treatment 
options.

A  ChatGPT failing medical reasoning

B  ChatGPT proposing follow-up diagnostics C  Challenging ChatGPT regarding provided answer

Figure 1 Requesting information from ChatGPT (GPT-3.5).   
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Understanding Conferences (MUC) were an important milestone for 
the development and formal evaluation of this approach within the 
framework of the information extraction task.28 This period saw the 
development of multiple systems using with success regular expressions 
(specifically finite-state automata and transducers29–31) to detect and 
extract from documents local pieces of information such as names of 
persons, organization, or places. However, this approach is limited 
mainly due to the fact that if rules are not explicitly programmed, infor-
mation may not be discovered or extracted. When aiming to include all 
possibilities, the number of required rules may become numerous and 
very detailed, becoming difficult to correct or extend. Moreover, rules 
are written to process documents from a chosen domain and genre; 
when they are applied to documents from another domain or genre 
without modification, their performance may significantly drop.32 

Starting in the 1990s, the community began to adopt machine 
learning to automatically discover and adapt the rules. With the devel-
opment of supervised statistical methods, NLP engineers no longer 
wrote the rules but only selected and encoded the features that 
were needed to express the rules. These features describe properties 
of the words, the sentences, or the documents, like the number of (un-
ique) words, capital characters, average sentence length, or assessing 
the ration between such characteristics. Given enough training exam-
ples, a machine could identify recurrent patterns and learn the rules it-
self33 (Figure 3). Natural language processing systems became more 
efficient in discovering unseen patterns and more generalizable since re-
training them on a new set of training examples was enough to apply 
the systems in a new domain without loss in performance. 

Beginning of the century, computing devices became faster, con-
nected, and used by a large part of the world population. The success 
of the Internet now provides researchers with an unseen quantity of 
written data available in a few clicks. This progress in hardware, data 
availability, and a better understanding of training algorithms allowed 
the NLP community to remove the main limitation of supervised ma-
chine learning–based approaches: human interventions. Despite the 
flexibility and improvement of performance offered by supervised ma-
chine learning systems, domain experts remained essential to annotate 
training data required to learn the rules and NLP engineers to define 
features to express these rules, limiting the performance and large-scale 
deployment of these systems. 

With faster hardware and better algorithms, we are now able to 
train large neural networks as LM, allowing for parallelization and the 
implementation of attention mechanisms. Consequently, in the last 
decade, such LMs replaced all concurrent LMs,34 mainly shallow lear-
ners,35 due to their ability to automatically discover the relevant fea-
tures to express the rules needed to solve a task.36 Meanwhile, large 
corpora (e.g. Wikipedia, social media, and GitHub) became available 
with the adoption of the Internet by the general population, providing 
data needed for unsupervised pretraining. During pretraining, neural 
LMs are trained to learn the general structure of written content by 
performing basic tasks such as predicting a word hidden in a sentence 
or if two sentences precede each other; i.e. they are trained to predict 
the word that is the most likely to follow a given series of consecutive 
words. This helps the neural networks learn general linguistic features 
such as basic lexical properties of the words composing sentences and 
their syntactic and semantic relationships.37 The pretrained can then be 
fine-tuned to perform a task of interest using a small training data set.38 

The major limitation of earlier attempts to train LM using n-gram mod-
els or recurrent neural networks was their limited capacity to consid-
ering the long-term context within sentences or paragraphs. This 
limitation disappeared with transformer-based LLMs, like GPT-3. 

Roadmap for the development and 
implementation of clinical large 
language models 
With the introduction of transformer-based LLMs,39 models were al-
lowed to focus on the relevant parts of the input to generate the 
most appropriate output. The combination of the attention mechanism 
and larger size of the layers composing the networks allows these mod-
els to encode long-range dependencies between words further apart in 
sentences, and even between sentences of a paragraph, thus capturing a 
part of the meaning of the text.40 Novel LLMs are continuously being 
trained with model sizes ranging from 1 to >1000 billion model para-
meters for various application areas41 and trained using different strat-
egies (see Supplementary data online, Glossary). Both generic LLMs, like 
BERT,42 PaLM,7 BLOOM,43 or LLaMa,44 and domain (Med-PaLM45 and 
PubMedBERT46) and language-specific (MedRoBERTa.nl47) models are 
used for various tasks, for example to provide an overview of relevant 
medical literature48 (evidencehunt.com). 

However, as LLMs like GPT-3 are trained to predict the most probable 
sequences of words, the output generated by a model may not necessarily 
be aligned with the user’s needs. The LLMs require to be further trained 
to follow instructions,49 which can be achieved through reinforcement 
learning where human annotators provide feedback on model outputs 
that are used to correct model behaviour. But as humans are expensive 
and slow to provide feedback, Ouyang et al.49 proposed an alternative ap-
proach. They trained a reward model using human annotations to rank 
competing answers generated by the LLM whereafter they replaced the 
human feedback by the reward model to optimize the LLM. Through 
this trial-and-error process,50 GPT-3 was optimized to align with the re-
quests of end-users, generating honest, harmless, and helpful responses. 
This optimized model (GPT-3.5) was later released to the public as 
ChatGPT (http://chat.openai.com/). Continuously including additional hu-
man feedback on generated answers, either by the domain experts, 
checks for harmful advice, or by collecting the level of satisfaction from 
end-users to optimize the reward model, model behaviour is further op-
timized (GPT-451) and made available as ChatGPT Plus. Additionally, com-
pared with GPT-3 and GPT-3.5, the GPT-4 model is substantially larger 
(100 trillion vs. 175 billion model parameters), able to process images, 
copes with different languages, and has a larger short-term memory. 

The challenge of developing task-specific 
cardiology large language models 
General LLMs are pretrained on publicly available data that contain few 
medical documents. Therefore, these models have limited understanding 
of the domain knowledge and are most likely to fail to generate a compre-
hensive answer to specialized medical questions.52 This expectation 
seems to be contradicted in recent studies showing impressive perform-
ance of LLMs taking medical board exams.53,54 However, textbook teach-
ing, as is the case when training LLMs, does not capture the complexity of 
real-world patients. Additionally, the clear structure and wording used in 
exams are fairly different compared with clinical notes, typically being 
loosely structured and containing abbreviations. On top of that, relevant 
information may be incompletely registered, clinical intuition and/or ex-
perience cannot be recorded,55–58 and relevant information regarding 
clinical decisions is likely inadequately captured as discussions during multi- 
disciplinary consultations or rounds are only succinctly described. Thus, 
even though the course of action is captured, clinical reasoning is not. 
When training LLMs, even when combining literature and EHR data, a  
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large part of important information is omitted and consequently affecting 
model applicability, warranting careful clinical evaluation. An interesting 
experiment would be to emulate clinical discussion to assess clinical rea-
soning by LLMs through chatbot–chatbot interaction, with their task being 
to optimize clinical care. Such a method may in turn be used to critically 
assess LLM-based suggestions, as is typically done in clinician–clinician in-
teractions, thereby providing a novel sustained feedback loop. 

The need for further optimization is demonstrated when asking 
ChatGPT the difference between two electrophysiological abbreviations 
that may occur in clinical notes (Figure 4); it provides answers not specific 
for the medical/cardiology domain or even incorrect answers. 
Additionally, ChatGPT provides less conclusive answers to questions 
about clinical guideline strategies compared with other chatbots 
(Figure 5). Both examples demonstrate the need for pretraining and 

Figure 2 Closed-world application of the freely available online chatbot to find a care clinic (UCHealth’s LIVI).   
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fine-tuning LLMs on medical data and specific downstream tasks, thereby 
taking into account the needs of the main actors, i.e. patients, clinicians, and 
researchers (Figure 6). This will be a challenge for most clinical institutes as 
it requires a large amount of data, technical knowledge, dedicated hard-
ware and sufficient storage, and strict security measures due to the sensi-
tive nature of the data.45,59 This adds to the cost of developing and 
deploying cardiology LLMs in clinical practice. Additionally, when training 
and deploying LLMs, awareness on carbon emission is important,60 by 
tracking emission61 and implementing GreenAI strategies.62 

Privacy and legal concerns 
It has been shown that LLMs are prone to three elements attacking the 
privacy of the data on which it has been trained. It can be determined 
whether a certain user’s data were used to train the model,63 the train-
ing data can be approximated,64 or even the exact training data can be 
revealed.65 Such adversarial attacks necessitate the use of privacy- 
preserving methods to fine-tune LLMs in healthcare. Over the past 
years, an increasing number of cyberattacks are observed with both re-
search and healthcare (>1500 attacks/week) in the top three.66–68 

Protecting patient privacy is thus an important concern when training 
and deploying LLMs as when using sophisticated methods, LLMs can re-
veal training data.65,69,70 Therefore, transfer learning to share pre-
trained models between hospitals or providing LLMs open access 
may be limited. To mitigate this, anonymization tools are developed 
such as deduce,71 spacy,72 or combinations of methods.73 

Differential privacy is a promising mathematical framework to ensure 
privacy preservation,74 which provides a privacy guarantee that holds re-
gardless of the prior knowledge and type of attack on the data. 
Additionally, patient privacy (Figure 7) can be protected by transferring 
the general LLM within the secure hospital Information and 
Communication Technologies (ICT) environment and not publicly re-
leasing the LLM and providing access to the LLM via the same framework 
as accessing personal EHR data for patients. Additionally, using trusted 
environments, like the National Health Service (NHS)-trusted research 
environment75 and Azure-based environments,76 or using personal 
health data lockers77 provides another security layer. This is especially im-
portant when using data obtained during model employment (e.g. input 
prompts) to optimize the LLM, and sensitive data could be leaked.78 

Individuals without knowledge on the technical basis of LLMs generating 
output may have a completely different understanding of this. If the 
end-user assumes that the LLM always provides correct answers, believing 
in biased or completely faulty results may result in dangerous situations. 

Thus, adequate information and education on LLMs should be ensured 
or even regulated. To address accountability and govern the development 
and implementation of AI models, several initiatives like the AI act estab-
lished by the European Commission,79 AIDA in Canada,80 or laws81–83 

and frameworks84 in the USA are developed and installed. 

Implementation of cardiology large 
language models 
When implementing cardiology LLMs in clinical practice, there are a few 
aspects to be taken into account: (i) clinicians and patients should trust 
derived models; (ii) the use of the models should be of benefit; and 
(iii) models should be safe to use. To this end, ultimately randomized 
controlled trials should be performed to assess the added value of mod-
el usage vs. standard of care.85,86 Models, and especially provided infor-
mation, should enhance clinical care. Currently, several trials are 
ongoing in the field of mental health,87–89 oncology,90,91 and gastro- 
intestinal,92 focusing on acceptance, disease management, and clinical 
decision-making. When embedding LLMs in cardiology for e.g. risk pre-
diction59,93 or patient communication,94 such evaluation is warranted. 

To ensure trust in implemented LLMs and to optimize the use of 
these models in real-world clinical practice, transparency during the 
model design, development, validation, and deployment phases should 
be ensured, alongside required CE marking to assess whether devel-
oped models meet safety requirements.95 Including multiple stake-
holders (e.g. clinicians, patients, and developers) in all stages and 
addressing issues raised by the stakeholders in open-access documen-
tation will ensure transparency (Figure 7). To guide the development, 
evaluation, and implementation of AI models, the FUTURE-AI guide-
lines (future-ai.eu) are established focusing on model fairness across 
groups, universality, traceability, usability, robustness, and explainability. 
The element gaining a lot of attention from clinical, research, and regu-
latory perspective is explainability due the black-box nature of algo-
rithms.96–99 For LLMs, attention score visualization tools100 and 
saliency methods101,102 can be used to provide insight in the model’s 
logic. Currently, methods for explainable AI are however under debate 
as they may lead to confirmation bias; e.g. the model is believed to be 
trustworthy when the explanations are intuitive and based on associa-
tions we as humans expect.103 Instead, thorough model assessment 
may reveal biased patterns, like association between ‘nurse’ and 
‘she’.104 To mitigate this, a semantic match approach has been pro-
posed to assess alignment between model explanations and human 
understandable concepts.105,106 

Figure 3 Timeline of major natural language processing milestones, stages, and future prospects. ALPAC, Automatic Language Processing Advisory 
Committee; EHR, Electronic Health Record; GPT, generative pre-trained transformer; MUC, Message Understanding Conferences; NLP, Natural 
Language Processing.   
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Additionally, when deploying models, clear guidelines on how to use 
task-specific models and human-in-the-loop continuous validation are 
critical, either to check the models’ output on correctness, occurrence 
of hallucinations, or model performance. When relying on LLMs to pro-
vide clinical input, it is essential that model performance is consistent. 
Recently, substantial fluctuation in ChatGPT’s behaviour was observed, 
characterized by a significant drop in performance after fine- 
tuning.107,108 This was systematically assessed in a study, for different 
types of tasks including logical reasoning.109 This is of large concern 

when relying on LLMs in clinical practice as such unpredictable behav-
iour may lead to significant consequences and serious adverse events. 
Therefore, adequate monitoring of tool performance over time is of ut-
most importance. By providing an audit option to evaluate the source 
data that were used to generate the response, transparency and trust 
regarding the generated output can be realized. By directly obtaining 
feedback provided by the end-users (either clinicians or patients), mod-
els can be continuously optimized. End-users should also be made 
aware of the limitation that LLMs cannot perform tasks requiring 

Figure 4 Asking ChatGPT (GPT3.5) the difference between two cardiology-related abbreviations electrophysiological study (EPS) and electro- 
anatomical mapping (EAM).   
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common-sense knowledge as, even though state-of-the art LLMs 
showed that the models are able to comprehend discontinuous infor-
mation to an impressive degree, LLMs may remain to lack a complete 
understanding of abstract concepts or inferences based on incomplete 
data, as this requires conceptual understanding and thought processes. 
The question whether AI models in general will get a sense of common 
knowledge remains unknown up to now,110,111 but the first results in 
whether understanding and reasoning are captured within models 
are promising45,112,113 and should continuously be evaluated.114 

In general, LLMs will be able to perform numerous clinical tasks such 
as speech-to-text tools, which can be used to optimize patient encoun-
ters, question answering in combination with sentiment analysis to 
tailor patient-centred chatbots, and machine translation and text sum-
marization to simplify or condense clinical notes. As described above, to 
safely apply LLMs in clinical practice, models should be fine-tuned on spe-
cific clinical tasks, and model output should be aligned with end-users’ 
need through reinforcement techniques. Additionally, clear guidelines 
and continuous feedback on model performance both during the 

[Note authors: Incorrect reference]

Figure 5 Requesting information on clinical guidelines from different chatbots.  
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Figure 6 Framework for training task-specific clinical cardiology large language models. LLM, large language model.   
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development and deployment phases should be provided to ensure the 
safe application of such models in clinical practice. On top of this, trans-
former agents115 can be used to guide the selection of appropriate tools 
for the specified tasks. Especially in the case of multimodal tasks (e.g. com-
bining speech to text and text to image), it cannot always be assumed that 
the end-user has sufficient knowledge to select the appropriate model, 
clearly indicating the benefit of such transformer agents. 

Clinical applications of large 
language models in cardiology 
Natural language processing and, also more specifically, LLMs have al-
ready been proposed for numerous applications. In the following para-
graphs, we will discuss these proposed and novel applications for both 
clinical and research purposes. 

Large language models for patient cohort 
phenotyping and the identification of 
adverse events 
The identification and characterization of cardiovascular disease cohorts, 
signs and symptoms of disease, reduction of missingness, and assessment 
of risk factors and comorbidities are a few examples regarding the 

phenotypic assessment of patients.5,17–23 Ultimately, supplementing struc-
tured information (lab, medications, vitals, and codes) with information de-
rived from unstructured data is likely to improve patient phenotyping. 
Through real-time phenotyping, relevant information on patient’s clinical 
status can be provided in dashboards to be used for clinical decision sup-
port or to aid phenotype harmonization like the HDR-UK phenotype li-
brary. Additionally, automated identification of adverse drug 
events116,117 or post-operative complications118 provides the opportunity 
to identify otherwise unrecognized adverse events or for identification of 
novel drug targets.119 When automizing such screening, social media can 
also be utilized to track healthcare status120,121 or identify adverse drug 
events,122 thereby broadening insights from clinical trials to the real world. 

Large language models to enrich risk 
prediction using large language models 
As EHR information is stored in both structured and unstructured ele-
ments, both data types are equally important in both the diagnostic and 
risk stratification processes. Currently, clinicians assess information 
from referral letters and diagnostic measurements [cardiac magnetic 
resonance imaging (MRI), electrocardiogram (ECG), echocardiography, 
lab, and genetics] and combine this with information on treatment, 

Figure 7 Framework for large language model development and implementation to optimize model performance and secure patient privacy. AI, arti-
ficial intelligence; ICT, Information and Communication Technologies; LLM, large language model.   
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medication, and performed procedures to evaluate the patient. 
Ultimately, these structured and unstructured data components should 
be combined for a complete characterization of cardiac status, for ex-
ample to provide multi-model risk stratification. In turn, LLMs can be 
used to forecast expected patient trajectories,59,123 and when com-
bined with wearable data or in-hospital measurement data, clinical 
risk assessment will be further improved. Potential risks of onset of car-
diac disease or worsening cardiac status may be recognized in early 
stages, and early treatment can be initiated. State-of-the art LLMs, 
like GPT-4, are able to process images, thereby further extending 
LLM capabilities and for example to combine ECG or cardiac MRI 
images with clinical text to optimize risk prediction. 

Large language models to enhance patient 
care 
Nowadays, both patients and clinicians can interact with the EHR, even 
though the EHR is intended to inform healthcare professionals on pa-
tients’ health status rather than inform patients’ themselves. Therefore, 
even though information is accessible, patients may not understand.124 

With LLMs, medical summaries or explanations intended for patients 
may be provided. When implementing such interactive chatbots, pa-
tients can interact with their personal medical data besides the regular 
contact with clinicians, which may be perceived as more empathetic.94 

By providing a ‘translation’ between the medical language and under-
standable language, patients’ understanding of their personal healthcare 
status is likely to be improved, but LLMs should be fine-tuned to per-
form such tasks.14,125 When developing such models, hospitals will se-
lect additional data sources to fine-tune models, allowing for the 
verification of correctness of information underpinning the answers 
provided by such models. Even though answers of chatbots should 
be regularly verified and checked on hallucinations, it certainly will be 
an improvement compared with patients browsing the internet for in-
formation. Additionally, using uncertainty estimation techniques, an in-
dication can be presented of the models’ level of certainty while 
generating an answer to the posed question. 

When introducing medical chatbots for patient interaction, adequate 
awareness on the background of such chatbots is important as the for-
mulation of prompts can severely affect the provided answer.126 In order 
to formulate an appropriate answer in a specific context, nowadays, the 
end-user should provide a clear request to the chatbot, by providing a 
definition of audience (10-year-old vs. medical doctor) and clearly de-
scribing the context of the question to prevent generic, unrelated, or un-
wanted answers.127–129 But as writing effective prompts is challenging, 
fine-tuning chatbots for different patients is certainly worthwhile. By util-
izing demographic information already stored within the EHR, the most 
appropriate model can be selected, and in combination with automatic 
suggestions on follow-up questions or prompt rewriting, the quality of 
patient–chatbot interaction is further improved, by for example tailoring 
answers to educational level or providing suggested follow-up prompts in 
line with questions asked by the user. On top of this, education in design-
ing appropriate prompts thereby clearly illustrating the effect of prompt 
design on generated output and offering prompt optimization services 
(https://promptperfect.jina.ai) will further improve patient-chatbot 
interaction. 

Large language models in cardiology 
clinical work-up 
Large language models may also be used to further streamline cardi-
ology clinical care. For example, information on healthcare status and 

care demand can be assessed prior to clinical consultation using such 
chatbot functions, like the K-Health application (https://khealth.com). 
Subsequently, a summary of this interaction can be provided to the clin-
ician, and the in-person consultation can be used to assess in-depth in-
formation. Clinicians may also use LLMs to assess patient-specific 
context, missing information in clinical notes, possible follow-up ques-
tions, or testing (Figure 1B). However, even though LLMs can provide 
such information, the information should always be assessed on cor-
rectness, as LLMs are trained to provide a reasonable answer depend-
ing on the probability of the sequence of words within the context of 
the question.130 To this end, the chatbot can be challenged to justify the 
given answer and provide the end-user with additional information 
(Figure 1C). But in some cases, the generated output answer may remain 
inconclusive/incorrect instead of providing a broader answer (Figure 8). 
Prior to implementation, such errors in model performance should be 
identified and where possible corrected. 

Answers provided by the tools should be fact checked on validity, ei-
ther by assessing the source of the answer (e.g. knowledge base vs. spe-
cific patient record) by professionals, checks in knowledge databases, or 
letting the model challenge itself on answers. An additional concern is the 
introduction of bias as not all relevant articles may have been included and 
certain topics are underrepresented in the training data due to the small 
body of relevant literature. Thus, erroneous answers with biased conclu-
sions may be generated if LLMs are presented with tasks outside of the 
scope of training data. However, such answers may be easily accepted by 
the end-user as truthful, as the answer provided by the model seems 
trustworthy or should be watermarked to have knowledge on how 
text was generated.131–133 Thus, when using such models, clinicians 
also require adequate understanding of the underlying framework, pos-
sibly provided by letting the LLM explain itself.134 

Large language models for administrative 
purposes and guideline adherence 
By writing medical notes, thereby combining data from several sources, 
e.g. previous clinical notes, clinical measurements, previous letters, or 
even with speech recognition during consultations, administrative bur-
den for clinicians may be alleviated.123,135,136 Additionally, through 
LLM-based information extraction techniques and providing automatic 
annotation or ascertaining of diagnosis or comorbidities from clinical 
notes, administration can be optimized. Using such methods, patients 
without registered codes but fulfilling a certain disease phenotype can 
be identified, either for research or healthcare purposes. With this 
automated identification,137,138 treatment strategies may be further 
personalized, patients eligible for study enrolment may be identified,139 

and continuously updating of patient problem lists can be used to op-
timize patient care. Automated mapping of clinical guidelines to the 
EHR may further improve patient care by improving guideline adher-
ence in day-to-day clinical practice. Suggestion on treatment can be 
provided to the clinician by using the information stored in large knowl-
edge bases. An important aspect to take into account when deriving 
such model can be text redundancy, which is very prevalent in the cre-
ation of clinical notes.140–143 Even though repeating mentions may indi-
cate importance of a finding, duplicating content from previous clinical 
notes may be used as a shortcut to write clinical notes and result in the 
generation of clinical notes with redundant text. In current clinical prac-
tice, it has already been shown that duplication of clinical note content 
hinders144,145 clinicians in their day-to-day process when determining 
the current vs. out-of-date state of patients and may introduce errors 
that potentially lead to safety issues.146 Therefore, assessing text  
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redundancy147 and understanding the effect of note redundancy on de-
veloped NLP models are important, as text redundancy can have an im-
pact on model performance.148 

Conclusions 
Large language models are very valuable assets in the field of cardiology 
as LLMs are able to perform numerous NLP tasks such as 
speech-to-text tools to optimize patient encounters, patient-centred 

chatbots for question answering, and machine translation and text sum-
marization to simplify or condense clinical notes. New opportunities to 
improve cardiology decision-making, streamline clinical care, and pro-
vide new and rapid insights on disease progression from free text 
data (Graphical Abstract) will be developed to enhance cardiac care. 
The most important aspects to ensure the safe application of LLMs 
in clinical practice are (i) model optimization for specific clinical tasks 
through fine-tuning and (ii) aligning model output with the users’ needs 
through reinforcement learning. To ensure the correct use of 

Figure 8 ChatGPT (GPT-3.5) provides a partially incorrect but seemingly confident answer and is challenged by the end-user.   
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LLM-based applications in cardiology, the end-users should be aware of 
its limitations to ensure safe implementation of such applications in 
cardiology. 
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Versus ACEi (enalapril), at a median follow-up of 27 months, ENTRESTO significantly reduced the risk of:‡3
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